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Shape optimization of thermo-diffusive systems
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Abstract—A method of design sensitivity analysis for shape optimization of a thermo-diffusive system is

developed. In the method an optimization problem is defined in functional form. The material derivative

concept and an adjoint variable method are employed for the shape design sensitivity analysis. An
axisymmetric problem of thermo-diffusion is an illustration of the method presented.

INTRODUCTION

IN THE present paper, a general method of design
sensitivity analysis for shape optimal design of thermo-
diffusive systems is developed. In the method an
optimization problem is defined in functional form.
The material derivative idea and an adjoint variable
method are employed for shape design sensitivity
analysis. The state and adjoint system equations are
finally formulated. In the paper, the material prop-
erties and thermal loads of a thermo-diffusive system
are held fixed, while the domain shape is varied in
order to meet some desired physical objectives. Shape
optimization of thermo-diffusive systems has not been
undertaken in the literature. The material derivative
concept has been successfully applied to variational
problems on varying domains in structural optim-
ization problems by several authors [1-5]. Much
literature is available on structural shape optimization
problems involving mechanical effects only. However,
few structural optimization studies under the influence
of temperature have appeared in the literature [5-7].
Most of these works are analyzed on fixed domains
by incorporating the design variables or parameters
into the governing equations. In the present study the
shape configuration of the domain is adopted as the
decision variable. The shape sensitivity analysis of an
integral functional, representing the system'’s response
of interest, for a thermo-diffusive system 1is
accomplished by the adjoint variable method and
material derivative concept. The shape sensitivity
analysis expressions, which are defined only on the
varying portions of the boundary, may then be
employed for any shape optimization or identification
problem at hand. References [8—10] provide general
information on functional analysis and variational
methods used in this work.

THERMO-DIFFUSIVE EQUATIONS

In our analysis we consider a thermo-diffusive sys-
tem in the domain Q governed by the equations

~4.+Q=0, (N
U+ 9Ty =0, )
Upp = 0’ (3)

where Q is the domain to be varied, ¢; is the heat
flux vector, u, is the velocity component, g is the
acceleration due to gravity, f is the coefficient of volu-
metric thermal expansion, 7 is the temperature, y, is
the unit vector component and Q is the distributed
heat source.

Equation (2) can be written as

Ui +b =0 4
where

b, = gBTy,.

For thermal problems, the boundary conditions can
be expressed as

T=T" on &Qy, )

g=4¢°> on 0Q, (6)
where g is the heat flux normal to the boundary.
For a velocity field the boundary conditions are as
follows:

w,=u" on 0Q, @)

b
t =1

i

on 0Q, 8)

where ; = 1, ;n; and n;, is the normal to the boundary.
Moreover, we have the relation
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g, = —kT, )

where £ is the thermal conductivity.

SHAPE SENSITIVITY ANALYSIS

In our approach to shape optimization, the material
characteristics and loading functions are all given
mmpntlpc However, the shane r‘npﬁmwahnn of the

¢S, R0 siiapt L0 auil

domain Q and its boundary surface dQ is not given a
priori in the problem. The domain shape will be taken
as the decision variable itself so as to satisfy some
physical objectives having desired distributions of
temperature, velocity, etc. A general integral func-
tional will be adopted that may serve as the objective
function to be extremized, or a behavioral constraint

to be satisfied in a shape optimization problem. This

functional, which is termed as the general perform-
ance criterion A, is defined in the domain Q and the
boundary d€ as foliows :

(T, q, u, t;) d(€Q).
(10)

The shape sensitivity analysis may now be stated to
find the total variation of A with respect to variations
in the domain Q subject to the primary problem equa-
tions (1)—(9).

In the so-called adjoint variable method of optim-
ization, equilibrium equations are incorporated into
the general performance criterion A in terms of the
adjoint temperature 7* and velocity u*

oQ

A= J (T, q;, uy, vy ) AQ A J
[

A= A+J (TH(— g+ Q) +ut (i + b)) dQ (1)

where A is the augmented functional. Integration by
parts gives

= J (r+q,T¥+ QT* —uy uff; + but) dQ
0

+J (5—gT*+1,u,)d(@Q). (12)
[ ¢}

The shape of domain Q, being the decision variable
itself, is not fixed. This variation of Q under a trans-
formation is characterized by a time-like parameter 1.
Thus following refs. [1-5], a point x; in Q (at 7 = 0)
moves to the point x] in the varied domain Q° under
the transformation #: x; —» x|, x;€Q given by

(13)
(14)

where V; is the deformation velocity field which rep-
resents the rate of domain deformation (see Fig. 1).
Thinking of t as the time variable, the material deriv-
ative of a continuously differentiable function w is
defined as

xi =n(x, ) +1Vilx)
Q= p(Q,7)
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FiG. 1. Domain Q undergoing deformation velocity V.

(15)

where () and ( )" denote the material and partial
derivatives of ( ) respectively with respect to 1.

Since the augmented functional A is described by
integrals, the material derivative of general domain
and surface integrals will also be given as follows [I,
3]:

iy =J w,dQ ¢, =j w dQ—i—J w, V, d(0Q)
Q Q aQ
(16)

w=w 4wV,

®r = J w, d(3Q)
o0

@2 =[ Wo+ (wan+ Hwy)V,) d(0Q)  (17)
aoQ

where (), indicates the normal derivative of ( ), H
is the curvature of the boundary dQ and V, is the
normal component of the deformation velocity V,
given by V, = Vn,.

Using (16) and (17), the material derivative of A
may be given in the following form:

= or ., or , or ,  Or
A= T+ —qgi+ ——up+
[# dq; oy,

Uy Ol

Ui+ TY

T+ QT* —weul! —uf i+ b’
+b;u;"> dQ+ J <(r+ q;T*+QT* —u, uf,
liie}

+buF+(s—qT*+ v uf), +H(s—qT*

+1 )V+6T+as’ % it B
KUy ) oT aqq + (’)uk Uk 6tk k
—qT*/—T*q’+tkuZ"+uZ"t2> d(2Q). (18)
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By (9) and (4) we get respectively
g = —kT;
b = gpnT".

Integrating (18) by parts again and using (19) and
(20) we obtain

19)
(20)

A= J <(_qi.i+Q)T*/+(uk.ii+bk)u’:k/
o

or
— 6% 4 gBv,u* T
+ ( gt +gbrant+ 6T>

é
+ (dk.ii+ l)“;‘) dQ+ J <(r+qin
auk e}

+OT* —uy at+ b+ (s— g T*+ ).,

ds
+H(s—qT*+nuf)V,+ <6T +z}*> T

os . as
% 4 - * 4
+ <6“A g >uk+ <0q r >(1
0\
+ (——g +uZ‘> z;)d(ag)
oty

where the adjoint variables ¢ and i}, are defined by

@n

= k(T 2)
q; = i a4,
. or
af, =\ —uf+ — (23)
Oty
and the adjoint variables §* and 7¥ are given by
g* = g7n (24)
¥ = By i1, (25)

The partial derivative of the boundary conditions
with respect to 7 can now be derived from equations
(5)—(8).

Based on (15) we have

T=T7T" on 0Q; (26)
and
T'+T, V=T +ThV,. 27
Since T = 0 we get
T = (TS =T V.. (28)
Similarly we obtain
9 =(qx—q.)V. onéqQ, 29)
u, = (W, —wu.)V;, ondQ, (30)
th= (2, — )V, ondQ,. 3n

In order to get rid of the terms involving partial
derivatives with respect to 7 in A it is now required
that the following adjoint problem is satisfied :
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or .
— G+ gBrai+ T in Q (32)
i) .
12,(,.,~+—f=0 inQ (33)
0 Ouy
T = é on 0Q; (34)
oq
as
o 35
q aT on 0Q, (35)
as
* .
u} o, on dQ, (36)
2= onon,. (37)
Ouy,

If the primary problem, equations (1)—(9), and the
adjoint problem, equations (22), (23) and (32)-(37),
are satisfied for an instantaneous domain Q at t = 0,
the total variation of A is given by the following
expression :

A= f (r+q,T*+QT* —u ut+ bt
o0

+(s—qT* + 1) o+ H(s—qT*
+1u))V, d(0Q)

n

0
+ (a; +4*> (Th— T2V d(o0)

Jr

[ as
+ <0q - T*> (4% —4.) Vi d(0Q)

Joa,

r N
+ <9-s- - f:) (b, — 1)V, d(6Q)
Ju

Jia, K

.
+ (as+u:‘>(r2_,-—u,,-)V,-d<6Q>- (38)

Jog, 0tk

It should be noted that in order to evaluate the

material derivative of A, the coupled primary and

adjoint equations must be solved in the following

order:

the T problem given in equations (1), (5), (6) and (9) ;

the u, problem given in equations (2), (3), (7) and (8) ;

the uf problem given by equations (23), (33), (36) and
(37);

the T* problem given by equations (22), (32), (34)
and (35).

EXAMPLE

For a fully 3D thermo-diffusive system the primary
and adjoint problems as well as boundary surfaces
must usually be discretized by using finite elements or
boundary elements in order to obtain the variation of
performance criterion with respect to domain vari-
ations. In the present study only the one-dimensional
shape optimization problem in which analytical
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expressions for the field variables can be obtained will
be analyzed.

Consider the axisymmetric problem of a fixed inner
radius r, and an outer radius r, which is to be optim-
ized and subject to thermal surface conditions (Fig. 2).
The problem is described as

(oo
ralra)- )
diva=0 (4n

Upey, =0 (42)

Uy, =0 (43)

T,_,, =T, (44

T,_, =T, (4%

The outer radius r, will be optimally chosen such that
the independent objective function J is maximized

maximize J = ABS Iu (Q.H—z) . (46)

The adjoint problem is defined by the following:

tdfdey
rar\"dr JTO

The following parameters are assumed: r, = 10, g =
1, f# = 1 with assumptions of two cases:

ld(dT*

e [T — o * pmand
rdrl dr) ghu* = 0.

Ist TI = 5:

T,=2

%,
7,
Moving pou®

Moving pounde®™

Fi1G. 2. Scheme of axisymmetric thermo-diffusive system with
moving boundary 6€),.

A. Seuzarec and M. KLEiBER

2nd T,=2, T,=S5.

Figure 3(a) presents the absolute value of velocity

(17)

as a function of #, for the first case and Fig. 3(b) for
the second one. Figures 4 and 5 analyze distributions
of velocity |u] and temperature T for the optimal radii
obtained. In each case, starting from an initial guess
for the outer radius r,, the primary and adjoint vari-
ables may be obtained numerically. The maximization
of the objective function J can then be obtained by
using its functional value and its gradient with respect
to the corresponding decision parameter via a numer-
ical maximization scheme. It is, of course, possible to
obtain the optimal solution for r, corresponding to
the objective function J by simply differentiating it
with respect to r,. However, the optimal r,is cal-
culated via the general shape sensitivity analysis pre-
sented in this study.

FINAL REMARKS

Utilizing the sensitivity analysis, a method of shape
design sensitivity analysis is established through a sys-
tematic method of constructing adjoint equations.
The method finds an application in the process of
various thermo-diffusive systems. The derivation of
the general sensitivity expressions has been performed
without regard to any specific shape, and hence the
results apply to any regular space geometries. It

(a}

x 107

e+ ‘"z)
2

1

x 103

i 178 :l i
101 12 14 16 18 20

2

F1G. 3. Absolute value of the velocity in the middle of the
tube as a function of r,. (a) Ty =5, T,=2. (b) T, =2,

.y mm



Shape optimization of thermo-diffusive systems 2303
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FIG. 4. Absolute value of velocity (a) and temperature (b) in the tube for optimal radius 7, = 16.2, T, = 5
and T, = 2.
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FIG. 5. Absolute value of velocity (a) and temperature (b) in the tube for optimal radius r, = 179, T, = 2
and T, = S.

should be noted that the assumed equation system
for thermo-diffusion is in simple form. Due to the
importance of the problem, methods of analysis of
more complicated forms of thermo-diffusion equa-
tions, which can be used in the processes of optim-
ization, should be undertaken.
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OPTIMISATION DE LA FORME DES SYSTEMES THERMO-DIFFUSIFS

Résumé—On développe une méthode d’analyse de sensibilité pour I'optimisation de la forme d’un systéme

thermo-diffusif. Un probléme d’optimisation est défini sous forme fonctionnelle. Le concept de dérivée

matérielle et une méthode de variable adjointe sont employés pour I'analyse de sensibilité a la conception
de la forme. On présente, en illustration, un probléme axisymétrique de thermodiffusion.

FORM-OPTIMIERUNG THERMO-DIFFUSIVER SYSTEME

Zusammenfassung—Es wird ein Verfahren fiir die Sensitivitidtsanalyse zur Formoptimierung eines thermo-

diffusiven Systems entwickelt. Bei diesem Verfahren wird ein Optimierungsproblem in funktionaler Form

definiert. Bei der Formsensitivitdtsanalyse wird das vom Material abgeleitete Konzept und ein Verfahren

der variablen Anpassung angewandt. AbschlieBend wird die Vorgehensweise anhand eines achsen-
symmetrischen Problems der Thermo-Diffusion verdeutlicht.

ONTUMHU3ALIUA ©®OPMbl TEPMOIHPPY3IUOHHBIX CUCTEM

Annoranms—Pa3paboTan MeTol aHaNK3a pacieTHON YyBCTBHTENLHOCTH LISl ONITHMH3ALMY GOPMEL Tep-

Moauddy3HOHHRIX CHCTEM. 3alava ONTHMMH3ALHEH ONpeneiseTca B GyHKUMOHAJILHOM BHIC. B anamnse

HCTIONIB3YIOTCS MPOM3BOIHBIN MOAXOA K MAaTEpHady M B3aHMOCBA3AHHBIH MeTOI nepeMeHHbIX. Hcnos-

30BaHHE NPEUIOKEHHOTO METOAA HJUTIOCTPHPYETCS HA OpUMEpEe OCECHMMETPHYHON 3a1ayu TepMoaud-
by3uu.



