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Abstract-A method of design sensitivity analysis for shape optimization of a thermo-diffusive system is 
developed. In the method an optimization problem is defined in functional form. The material derivative 
concept and an adjoint variable method are employed for the shape design sensitivity analysis. An 

axisymmetric problem of thermo-diffusion is an illustration of the method presented. 

INTRODUCTION 

IN THE present paper, a general method of design 
sensitivity analysis for shape optima1 design of thermo- 
diffusive systems is developed. In the method an 
optimization problem is defined in functional form. 
The material derivative idea and an adjoint variable 
method are employed for shape design sensitivity 

analysis. The state and adjoint system equations are 
finally formulated. In the paper, the material prop- 
erties and thermal loads of a thermo-diffusive system 

are held fixed, while the domain shape is varied in 
order to meet some desired physical objectives. Shape 

optimization of thermo-diffusive systems has not been 
undertaken in the literature. The material derivative 

concept has been successfully applied to variational 
problems on varying domains in structural optim- 
ization problems by several authors [l-5]. Much 

literature is available on structural shape optimization 
problems involving mechanical effects only. However, 
few structural optimization studies under the influence 

of temperature have appeared in the literature [5-71. 
Most of these works are analyzed on fixed domains 
by incorporating the design variables or parameters 

into the governing equations. In the present study the 
shape configuration of the domain is adopted as the 

decision variable. The shape sensitivity analysis of an 

integral functional, representing the system’s response 
of interest, for a thermo-diffusive system is 
accomplished by the adjoint variable method and 
material derivative concept. The shape sensitivity 
analysis expressions, which are defined only on the 
varying portions of the boundary, may then be 
employed for any shape optimization or identification 
problem at hand. References [8-lo] provide general 
information on functional analysis and variational 
methods used in this work. 

THERMO-DIFFUSIVE EQUATIONS 

In our analysis we consider a thermo-diffusive sys- 
tem in the domain R governed by the equations 

-Y!., + Q = 0, (1) 

k,ir +dm, = 0, (2) 

u - 0, k.k - (3) 

where R is the domain to be varied, ql is the heat 
flux vector, uI is the velocity component, g is the 
acceleration due to gravity, b is the coefficient of volu- 
metric thermal expansion, T is the temperature, yk is 
the unit vector component and Q is 
heat source. 

the distributed 

Equation (2) can be written as 

up,,, + hl, = 0 

where 

b, = .gK%. 

(4) 

For thermal problems, the boundary 
be expressed as 

conditions can 

T = Th on aa,, (5) 

4 = yb on an,, (6) 

where q is the heat flux normal to the boundary. 
For a velocity field the boundary conditions are as 
follows : 

IA, = li; on aR, (7) 

ti = t; on dR, (8) 

where ti = u,,,n, and n, is the normal to the boundary. 
Moreover, we have the relation 



q, = -kT .I 

where k is the thermal conductivity. 

(9) AX2 

SHAPE SENSITIVITY ANALYSIS 

In our approach to shape optimization, the material 
characteristics and loading functions are all given 
quantities. However, the shape configuration of the 
domain R and its boundary surface ZQ is not given a 
priori in the problem. The domain shape will be taken 
as the decision variable itself so as to satisfy some 
physical objectives having desired distributions of 
temperature, velocity. etc. A general integral func- 
tional will be adopted that may serve as the objective 
function to be extremized, or a behavioral constraint 
to be satisfied in a shape optimization problem. This 
functional, which is termed as the general perform- 
ance criterion A, is defined in the domain Q and the 
boundary 8R as follows : 

The shape sensitivity analysis may now be stated to 
find the total variation of A with respect to variations 
in the domain Q subject to the primary problem equa- 

tions (I )-(9). 
In the so-called adjoint variable method of optim- 

ization, equilibrium equations are incorporated into 
the general performance criterion A in terms of the 
adjoint temperature T* and velocity u* 

)i = A+ (T*(-q,,+Q,+u,*(U,,,,+bk))dn s (11) 
n 

where ii is the augmented functional. Integration by 
parts gives 

A = (r+q,T,~+QT*-uI,,uI*i+b,!u~)dR s 0 

+ s (S--Lr*+tluJd(8R). (12) 
189 

The shape of domain R, being the decision variable 
itself, is not fixed. This variation of 0 under a trans- 
formation is characterized by a time-like parameter r. 
Thus following refs. [l-5]. a point X, in R (at T = 0) 
moves to the point .x: in the varied domain R’ under 
the transformation rl: s, + x:, xi E R given by 

Using (16) and (I 7), the material derivative of ;i 
may be given in the following form : 

+b,u:+(s-qT*+t,u:),,+H(s-qT* 

XT = ~(X,,z)+zV,(.X,) (13) 

nr = V/(Q, r) (14) 

where V, is the deformation velocity field which rep- 
resents the rate of domain deformation (see Fig. I). 
Thinking of r as the time variable, the material deriv- 
ative of a continuously differentiable function w is 
defined as 

-qT*‘- T*q’+tuf’+u:t; (18) 
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FIN. I, Domain R undergoing deformation velocity V,. 

bti = Iv’ + u’,k v, (15) 

where ( ‘) and ( )’ denote the material and partial 
derivatives of ( ) respectively with respect to r. 

Since the augmented functional A is described by 
integrals, the material derivative of general domain 
and surface integrals will also be given as follows [I, 
31 : 

(16) 

42 = s ,,~~ (4 + (~~32.n +Hw,)V,)d(X2) (17) 

where ( )., indicates the normal derivative of ( ), H 
is the curvature of the boundary an and V, is the 
normal component of the deformation velocity V, 

given by V,, = V,n,. 
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By (9) and (4) we get respectively 

q; = -kT’ .I (19) 

6; = g&T’. PO) 

Integrating (18) by parts again and using (19) and 
(20) we obtain 

ft= (-q,.,+Q)T*‘+(u,,,,+b,)u:’ 

+H(s-qT*+tpC))Vn+ 

+ (&,>.;+ ($T*)y. 

+ (if +@)r;)d@Q) (21) 

where the adjoint variables G,? and a& are defined by 

and the adjoint variables t* and if are given by 

4* = @n, (24) 

i,* = I&&. (25) 

The partial derivative of the boundary conditions 
with respect to T can now be derived from equations 

(5)~(8). 
Based on (15) we have 

?= P on ac2, 

and 

(26) 

T’+ T,, Vk = Th’+ T1; VL. 

Since Th’ = 0 we get 

T’ = (TP, - T,,) Vn. 

(27) 

(28) 

Similarly we obtain 

4’ = (qpk -4.J Vk on 8% (29) 

U; = (u,“,, - uk,;) v, on ao, (30) 

t; = (t~,,--tk,r)V, on an,. (31) 

In order to get rid of the terms involving partial 
derivatives with respect to z in A it is now required 
that the following adjoint problem is satisfied : 

in0 (32) 

c .+x=0 inQ 
k.11 au, (33) 

T* =g onaR, 
aq 

(34) 

q* = - a$ on an, (35) 

as 
uk - *- -at 0naR, (36) 

I 

as 
t:=- 0naR. 

auk 1 (37) 

If the primary problem, equations (l)-(9), and the 

adjoint problem, equations (22), (23) and (32)-(37), 
are satisfied for an instantaneous domain !A at z = 0, 
the total variation of A is given by the following 
expression : 

A= s (r+q,TTfQT*--k,,u:,+b,:uk* 
?R 

+(s-qT*+tku$),,+H(s-qT* 

+ t&)) v, d(aQ) 

It should be noted that in order to evaluate the 
material derivative of A, the coupled primary and 
adjoint equations must be solved in the following 

order : 
the Tproblem given in equations (I), (5), (6) and (9) ; 
the uk problem given in equations (2), (3), (7) and (8) ; 
the uf problem given by equations (23), (33), (36) and 

(37) ; 
the T* problem given by equations (22), (32), (34) 

and (35). 

EXAMPLE 

For a fully 3D thermo-diffusive system the primary 
and adjoint problems as well as boundary surfaces 
must usually be discretized by using finite elements or 
boundary elements in order to obtain the variation of 
performance criterion with respect to domain vari- 
ations. In the present study only the one-dimensional 
shape optimization problem in which analytical 
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expressions for the field variables can be obtained will 
be analyzed. 

Consider the axisymmetric problem of a fixed inner 
radius ri and an outer radius rz which is to be optim- 
ized and subject to thermal surface conditions (Fig. 2). 
The problem is described as 

Id du 
;. dr rdr +g@T=O 

( > 
(39) 

(40) 

div u = 0 (41) 

ur=r, =o (42) 

zLr2 = 0 (43) 

r,=,-, = T, (44) 

The outer radius rz will be optimally chosen such that 

the independent objective function J is maximized 

, (46) 

The adjoint problem is defined by the following: 

The following parameters are assumed: r, = IO, g = 

1, j3 = 1 with assumptions of two cases: 

2nd 7’, = 2, T, = 5. 

Figure 3(a) presents the absolute value of velocity 

as a function of r2 for the first case and Fig. 3(b) for 
the second one. Figures 4 and 5 analyze distributions 
of velocity IuI and temperature T for the optimal radii 
obtained. In each case, starting from an initial guess 
for the outer radius r2, the primary and adjoint vari- 
ables may be obtained numerically. The maximization 
of the objective function J can then be obtained by 
using its functional value and its gradient with respect 
to the corresponding decision parameter via a numer- 

ical maximization scheme. It is, of course, possible to 
obtain the optimal solution for r2 corresponding to 
the objective function ./ by simply differentiating it 
with respect to rZ. However, the optimal r2 is cal- 
culated via the general shape sensitivity analysis pre- 
sented in this study. 

Utilizing the sensitivity analysis, a method of shape 
design sensitivity analysis is established through a sys- 
tematic method of constructing adjoint equations. 
The method finds an application in the process of 
various thermo-diffusive systems. The derivation of 
the general sensitivity expressions has been performed 
without regard to any specific shape, and hence the 
results 

‘70 
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- 
Lb J/ i-c-4 
LY- 

5 

FIG. 2. Scheme of axisymmetric thermo-diffusive system with 
moving boundary 32,. 

FINAL REMARKS 

apply to any regular space geometries. lt 

(a) 

t 

(bl 

FIG. 3. Absolute value of the velocity in the middle of the 
tube as a function of r2. (a) T, = 5, Tz = 2. (b) T, = 2, 

Tz = 5. 
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FIG. 4. Absolute value of velocity (a) and temperature (b) in the tube for optimal radius rz = 16.2, T, = 5 
and Tz = 2. 
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FIG. 5. Absolute value of velocity (a) and temperature (b) in the tube for optimal radius r2 = 17.9, T, = 2 
and T, = 5. 

should be noted that the assumed equation system 
for thermo-diffusion is in simple form. Due to the 
importance of the problem, methods of analysis of 
more complicated forms of thermo-diffusion equa- 
tions, which can be used in the processes of optim- 
ization. should be undertaken. 
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OPTIMISATION DE LA FORME DES SYSTEMES THERMO-DIFFUSIFS 

R&urn&On dkeloppe une mkthode d’analyse de sensibilitk pour l’optimisation de la forme d’un systtme 

thermo-diffusif. Un probleme d’optimisation est dehni sous forme fonctionnelle. Le concept de dcrivee 
materielle et une methode de variable adjointe sont employ& pour I’analyse de sensibilite a la conception 

de la forme. On presente, en illustration. un probleme axisymetrique de thermodiffusion. 

FORM-OPTIMIERUNG THERMO-DIFFUSIVER SYSTEME 

Zusammenfassung-Es wird ein Verfahren fur die Sensitivitatsanalyse zur Formoptimierung eines thermo- 
diffusiven Systems entwickelt. Bei diesem Verfahren wird ein Optimierungsproblem in funktionaler Form 
definiert. Bei der Formsensitivitatsanalyse wird das vom Material abgeleitete Konzept und ein Verfahren 
der variablen Anpassung angewandt. Abschliebend wird die Vorgehensweise anhand eines achsen- 

symmetrischen Problems der Thermo-Diffusion verdeutlicht. 

OIITMMM3AHMII QOPMbI TEPMOAM@QY3MOHHbIX CRCTEM 

AimoTamn-Paspa6oTari MeTOLl aHaJIU3a paCYeTHOti ‘IyBCTBUTIYTbHOCTU WSI OIITUMU3aUUU (POPMbI Tep- 

MOflU+,,y3HOHHbIX CUCTBM. 3aAa9a OIITUMA3aIIUH OIIp~AWISIeTCZ4 B +yHKUUOHanbHOM Bane. B ilHZiJIU3e 

UCI,O,Lb3~TC5, IlPOU3BOflHbIii llOLIXOLI K MaTepUany U 83ZGiMOCBI13aHHbIfi MeTOA IIepe.MeHIibIX. kkIlOJIb- 

30BaHUC II~~OXGSHHOrO MeTOLIa UJIJIIOCTpUpyeTCSI Ha IlpUMepe O’SZCUMMeTpFIHOfi 3aZIa’IU TepMOnU+ 

4y3uu. 


